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Abstract. We consider the class of three-dimensional attractive finite range or similar potentials
AW (r), depending on a strength constantBeyond a ‘critical’ value ¢, the potential W (r)

has at least one bound state. For the s-wave, we propose simple bouridsdiotained by
formally solving the Schirdinger equation for the zero energy bound state. The various bounds
are compared with the exact valug for a set of usual potentials. They are also compared with
bounds derived in earlier works by Glasgral and by Calogero. We show that tiie£ O case

is solved by equations very similar to= 0 ones.

1. Introduction

The number of bound states produced by a given potential is a standard question of quantum
mechanics, which is discussed in many textbooks (see, for instance [1, 2]). Perhaps the most
familiar relationship is the Bargmann inequality,

1 +00

"S5 0

it proves very useful when deciding whether the spectrun¥ ¢f) is finite. However,
because it is an inequality, and moreover an upper bound on the number of bound states, it
cannot ensure the occurrence of at least one bound state. Sufficient conditions exist, which
answer this question [1]. One of them was proposed years ago by Calogero [3]. On the
other hand, optimal conditions have been obtained by Glessal [4] for the absence of
bound states by using variational techniques, which reads

-1 +00
(p — P T'(2p) / |}’2V(r)|pg -1 1<p< 3 (2)
prT2(p)(2 + 121 Jo r 2

The purpose of the present work is to provide a simple and efficient criterion for the
existence of a single bound state. It is derived for spherically symmetric potentials)
depending on a strength constantThe method is based on results reported in a previous
work [5], devoted to the behaviour of the eigenvalue at the transition between zero and
one bound state. This transition occurs at a ‘critical’ value of the strength coristant
corresponding to a bound state at zero energy. We show that an estimate can provide an
upper bound of. for a large class of potentials.

Let us mention a recent paper by Chadznal [6] that deals with a generalization
of the Calogero—Cohn bound. Their method is quite different from ours and provides

r|V(r)| dr (1)
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an upper bound to the number of bound states. The efficiency of the bound, provided by
equation (2), as well as Calogero’s sufficiency condition, will be compared with the criterion
we are advocating in the present work.

The paper is organized as follows. In section 2 an upper boundfee proposed for
the s-wave and extended to higher waves. In section 3 our proposal of an upper bound
for A; is tested against the exact value for some potentials. Conclusions are presented in
section 4.

2. Existence of an upper bound om\.

We consider spherically symmetric scalar potential®,(r), having at most a finite number
of bound states for a finite value of the strength constant This class comprises
potentials not too singular at the origin and decreasing fast enough at infinity, i.e. such
that [, r|W(r)| dr and [,"™ |W ()| dr, b > O are finite.

The Schédinger equation reads :

h?
(—zmA + kW(V)) v(r) = Ey(r). 3

Here,m is the mass of the single particle experiencing the potefitial), andy (r) is the
single particle wavefunction.
The usual decomposition on the spherical harmonics

y =310y (4)

r

t,m
removes the angular variables. We are left with radial second-order differential equations
depending on the value of the angular momentum

2m L+1
flOLE ) = <h_2(E+AW(r))+ (rl’ )) feOu E.r) ()

where a prime denotes a derivative with respect to the variable
In this section we study the transition from zero to one bound state, which corresponds
to the ‘critical’ valuer = A¢ [5]. Actually, since|W (r)| is assumed to decrease faster than
1/r2 at infinity the Bargmann inequality [2] applies:
1 2m_ [+
<———— A wer)d 6
ng 2“_1}1_2/0 rWe(r)dr (6)

wheren, is the number of bound states of the potential, involving only the attractive part,
w4, of the potentialW. In the case of interest hergy = 1, it gives

2m [T
—hq)»/ rWe(r)ydr > 2¢ + 1. ©)
0

For the existence of one bound state, this condition is necessary but not sufficient. It is
saturated for shell-delta potential. An upper boundXgmould be very helpful, since for
every > Ac the potential has at least one bound state. Note that the Calogero sufficiency
condition [3] yields also an upper bound, but in a quite different way.

As shown in [5], the ‘critical’ value )., corresponds to a bound state of zero energy.
For simplicity, we assume the potenti®(r) to be purely attractive and put

2m
Vi) = 7z W(r) 8)

the functionV* being positive definite.
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21.¢=0
We start with the? = 0 case. Looking fon., we search for the value aof, such that
o) +AVE() folh,r) =0 ©)

with the following constraints:fy(A, r) vanishes at = 0, is constant asymptotically, and
has no node fy(A, r) > 0).

For every positive value of, asymptotically, equation (9) admits two solutions: 1 and
r. Using Lagrange’s method of ‘variation of constants’, the 8dimger equation with the
boundary condition lim. ., fo(r, r) = 1 induces the Volterra integral equation:

+00
foh,r)=1— ,\/ ' =VEE) fo(r, r)dr. (10)

Writing fo(A, r) as a series expansion

+00
four) =" fE(r) (11)
n=0
allows us to solve (10) by iteration:
Lo.r =1

+o0
fan,r) = —,\/ ' —r\Vre) fa o) dr'.

+00 n
/6Ol < x(/ rVEe) dr’) /n!
0

the series expansion (11) is normally convergent with respect to

By construction, the functiorfy(x, r) corresponds at infinity to an s-wave bound state
wavefunction at zero energy. The second condition is its vanishing-at0. For this
purpose, we write

(12)

Since

+00
fo0..0) = (=) a," (13)
n=0
where
ap = 1
+00
a; = f riVT(r)dry
0
+00 +0o0
a2:/ r1V+(r1) dr1/ (Vz_rl)v+(r2)dr2
0 ry

etc, and in general

+00 +0o0
a, = f r VT (r) dr1/ (ro —r) V(@) drs. ..
0

rn

+00 +oo
/ (rnfl _rn72)V+(rnfl) drn71/ (rn _rnfl)v+(rn) drn- (14)

T'n—2 Tn—1
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For attractive potential¥ (r), thea,’s are positive and therefore the series equation (13)
is alternating. Furthermore, in appendix A, we show that

+0o0
a, < anil/ rV*i(r)dr (15)
2 Jo

for n > 2. This inequality ensures that for evely < 2/M;, where we have put
M = O+°o rV*(r)dr, we know the sign of thath-order remaindeR, for n > 1, namely

+00
Vp=1  Ryp) =) (—)'ar" =0 (16)
n=2p

+00
vVp)  Raypu®) = Y (=)'ar" <O. (17)
n=2p+1

For everyr < 1/My, fo(x,0) is positive. Indeed, taking the first two terms of (13),
ap—aih =1—AM; > 0, we are left withR, > 0.
At the next order, we look for the solutions of the equation
1— Mir +a? =0. (18)
The lowest root reads

My — |/ M? — 4a,
! (a3 > 0).

Ay =
2 2612

It leads to

Ao = 2 <2 (19)

X
M1+,/M12—4a2 My

for a; > 0, provided thatMl2 — 4a, is positive, which is assumed. The bound is
dominated by 2M;. The remaindefR3 is negative or zero. Consequentlg(rz, 0) < 0
and the ‘critical’ value is situated in the interval

1
<A< A 20
py She Stz (20)

or equivalently

2
1< AeMy < <2 (21)

1+ /11— 4a/M?
If the discriminanth — 4a; is negative, we look for the lowest solutioky, of
1— M + aox? — azr® 4+ agn® = 0. (22)

Again, if A4 exists and satisfies, < 2/M;, the remaindefRs is negative or zero and
therefore fy (14, 0) is negative. We then have

1< AMy < AgMy < 2. (23)
Note that since the remainders satisfy inequalities (16), (17), we have

2p—1 2p
(Vp =1 D and" < for, 0) < Y aph” (24)
n=0 n=0

for A < 2/M;. On the other hand the term
1— Mih + 22ay — azh® + ag)®
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is positive forx < 1/M; and negative fok = A, (if A, exists) therefore, < A,. Moreover,
if A3 is the lowest solution of the equation

1— My +a)? —azn® =0 (25)

for every A < A3, fo(X, 0) is positive provided thats < 2/M;. In this case); > A3 and
since the polynomial is positive for < 1/M;, we have
1
M
It follows from this relationship and the above discussion that an upper bouigd to
can be obtained, provided thatM; < 2. The first-order estimaté,,, is rather easy to
calculate. It can be systematically improved by considering higher-order approximations.
It would be interesting to determine the class of potentials suchMfat- 4a, > 0
ensuring the existence ab, which is always bounded by/21; (see (19)). Unfortunately,
we have not found a simple criterion. A necessary condition, however, can be expressed
as an inequality, which we now consider.
By definition, a, is given by

< A3 < Ac < Ag < A (26)

400 +00 M?2
a = / riV*(ry) dry / (ra—r)Vi(rp) drz = 71 — bz (27)
0 r1
where
+o00 +o00
by = / r2VT(ry) dry / V*H(rp) drs. (28)
0 ry
With this new notation, reads
2
Ao = . (29)
My + ,/4by — M%
The condition for a positive discriminant becomes
M2
by > Tl (30)
or equivalently
400 400 MZ
/ r2VE(r) dr/ viE)dr' > 71 (31)
0 r
An equivalent expression can be found by defining
+o0
F(r)= / Ve dr. (32)

Inequality (31) is obtained when the function Ibgis concave, and lim, o rF(r) = 0.
This can be shown by integrating with respect-tandr’ on both sides of the equation

(Vr = 0) (V' > 0) F2 <’ J;r ) > F(rF() (33)
derived for the concavity condition of lag. It is equivalent to

d2 FF’ — (F/)Z

37 log F(r) = Tz <0 (34)

which meansFF” — (F')?> = —F(V*) — (V)% < 0. Therefore condition (31) enters the
category of convexity inequalities. It is satisfied by the Woods—Saxon, the Gaussian and
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the exponential potentials. Note that the latter is a limiting case whgid-dog F(r) is
zero corresponding ta, = 2/M;.

It is simple enough to evaluate the boung so that for potentials not satisfying 4>
M?Z, it is very tempting to circumvent this difficulty by calculating(U) for an attractive
comparison potentiall/, satisfying (31), chosen in such a way thatU) > A.(W). The
intuitively simplest possibility is to consider

Ur)=W@)0(r —rg)0(R—r)
whered is the Heaviside function. In this case,

2M
AcMy < inf ! (35)

(ro,R)€Dy Mi(ro, R) + \/4[92(7'0, R) — Mf(ro: R)

whereD; is the set of valuesrg, R) such thatrg < R and 4,(rg, R) — Mlz(ro, R) >0
However, this bound is not satisfactory numerically.

We found a better approximation by acting on the functitn). Consider two attractive
potentials,W; and W,, satisfying the usual integrability conditions. By definifvg™ and
V" as before (see equation (8)), let us first show W\@t < Fyy implies Ac(W2) < Ac(W1).

The Schaédinger equations at the ‘critical’ values read

fw (r) = )»c(Wl)Wlfwl(r) =0

fw, (1) — )»c(Wz)szWZ(r) =0.

Sfw, and fy, having the characteristic behaviour of 1s-state wavefunctions (no nodes).
Since Fy+(r) = fr+°° V() dr', i = 1,2, the WronskianV[ fw,. fw,]f, ro < R is equal
to

WL fwss fwol R = L () fin, () (ee(Wo) Fy (r) — Ae(W1) Fys (r)]

R
~e(W2) [ ) O)Fis ) = Fy (]

R
(W) — (W) / (v ) (F) Fyg (r) . (36)

If Fy+ and Fy; are such that lim.orFy+(r) = 0, fori = 1,2, the term in square
brackets in (36) vanishes whep— 0 andR — +oo. Since the Wronskian tends to zero
whenrg — 0 andR — +oo, the sum of the two last terms on the r.h.s. tends to zero.
AssumeFy+ < Fyr. As Wi and W, are attractive the derivativesy, , i = 1,2 decrease
and since they are zero at infinity both are positive. Therefgie fw,)’ is positive, and
consequenthi (W) < Ac(Wh).

According to this, we have introduced a comparison funcfipir), under the following
constraints: » +— Fc(r) decreases (the corresponding potential must be attractive) and
(Vr)F.(r) < F(r). This can proceed in various ways. The following prescription, although
not unique, has been found useful:

Fe(r) = F(ro) r <o
Fe(r)y = F(r) ro <
r —

Fc(r) = F(R) (l

Fc(r)=0 r>R+e.

<R

(37)
R<r<R+e
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It is easy to verify thatF- (r) satisfies the stated conditions for sufficiently sneatdind
we obtain, in the limite — 0,

. 2M
AcMi < inf ! =M (38)

"o PP2 ¥ (ro, R) + \/452(ro, R) — MZ(ro, R)

where

R
My(ro, R) = RF(R)+f rVE(r)dr
"0 39
» RZF(R)Z R _— +o00 oy , ( )
ba(ro, R):#—i— reVr(r)dr V(@) dr'.
The domainD; is the set of values$rg, R), ro < R such that the discriminant exists.
Among other possibilities which we have investigated numerically, the best
phenomenological bound we have found consists in calculatfigand b, on a finite
interval [ro, R], while keeping F(r) at its original value, remembering thdt, =
f0+°° r2V*T(r)F(r)dr. In this case, we are left with
. 2M
AcMi < inf ! =Py (40)
"R Mi(ro, R) + /450, R) — ME(ro, R)

ro r

whereDs is the sef(ro, R), ro < R which satisfies &;(ro, R) — Mlz(ro, R)>0and

R
Mi(ro, R) = / rVT(r)dr
i (41)
b3(ro, R) =/ r2VE(r)F(r) dr.
ro
This prescription has no further justification.
We shall end this section with two remarks. The above bouktdsiequirer’ My < 2.
For cases such thai.M; > 2, there is no other solution to finding a positive functin
such that(Vr)U (r) < VT (r) and satisfyingh>(U)M1(U) < 2. It leads to

reMy < AP(UYM,.

Secondly, for potentials having a repulsive par a, the upper bounds are obtained
by solving the equation fofy (A, @) = 0. This is more or less obvious since for a repulsive
hard core, the conditiorfp(1, 0) = 0 is equivalent tofo(A,a) = 0. This is nothing but
solving the Schivdinger equation for the translated potentiét) W4 (r) = W + a).

Indeed, if we putf§(r,r) = fo(x, a +r) equation (10) reads

+00

fSr) = 1—A/ ' —r—a)Vre) g, r' —aydr’

r+a

+00
= 1—A/ ' =r)VrE' +a) f§,r)dr.

22.0#0

As far as the critical zero energy bound state is concerned, thé@ober equation for
waves of angular momentus£ 0 reduces to an s-wave problem. In order to show it, we
start from the radial wave equation

d? L+1
ga i+ (wi)— (,i )> fe.r) =0, (42)
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The transformation

;= y @D

43
fer) = r e (x) (*+3)

yields
2

d
2P0 + V(@) @D g, (3, x) = 0 (44)

(2¢ + 1)2
which is equivalent to an s-wave equation. Consequently the results of the preceding section
can be applied t@, (1, x). For instance, by using transformation (43), searching.fdior
the Gaussian potential at= % is equivalent to searching for the critical value in the: O
Yukawa case.

Note that for regular potentials, this transformation introduces a singularity at the origin
which never exceeds/12. In the case of singular potentials behaving like!, o < 2
at the origin, the transformed potential is still singular at the origin, where it behaves like
x~@+40/@+D Thys, its singularity is strictly less tham?. At x — +oo the transformed
potential decreases as @+4/CHD when lim_ 4o r*V*T () = 0, (@ > 2). Thus it
decreases faster tharr?,

Note also that the concavity of the transform&d, according to (32) and (34), is
decreasing with increasing angular momentunThus, it becomes more and more difficult
to get any bound.y”’ when the angular momentum increases.

The coefficientsM; andb,, introduced for¢ = 0, depend ort according to

+00
My — (20 + 1)/ rVi(r)ydr = (20 + )M,
0

+00 +00 (45)
by (20 +1)2 / r2 2y * () dr / PRV A = (204 1)%Y).
0 r
In r-space, the expansion of the radial wavefunction becomes
+00
Q)= 9" O, r) (46)
n=0
whereg, (1, r) = r' fo(, r). The values ofs{" are given by
o) () =1
A Foo 72 (47)
(n) _ r_ (D (n—1) / + /7 1
0, (A, r)= T—i—l/, (r (r’) r)(pg A, rHVTaHdr.

Note that (46) and (47) can be extracted from the \olterra integral equation
obtained from the two solutions*! and r—¢, combined with the asymptotic condition
lim, oo fe(h,r) = 1.

At the origin

—+00 )\' n
l L=y (9)a (= 48
i e = S () (8)

whereat? = 1, ¥ = My, af? = ME/2— b9 and

+oo +00 " 2
aﬁ = f riV*(ry) dr1/ ro—rn1 () VT (ra)dry. ..
0 r1 r2
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+oo ( oo 2
. / Fp—1 —TIn-2 < ) V+(rn—l) drn—l
Fn—2 Fp—1
400 o1 20 N
X / Fn — Fpn—1 ( . ) V7™ (r,)dr,. (49)

Therefore the new series becomes an expansion of the vadia®é + 1). Applying the
previous results we find that when/'(2¢ + 1) < 1/M; no bound state exists, in agreement
with the Bargmann inequality.

The boundi, becomes

AP 2

1=
+ 1+,/4% /M2~ 1

and exists wherby”! > M2/4. This convexity inequality is satisfied when the second

+00

derivative of lod /iy V+(@)r'~2 dr’) is negative or zero. It should be noted that the
boundy” is dominated by &¢ + 1)/M; and we have

(50)

MOMy _ A My

2041 T 20+1
Due to reasons stated above, concerning the concavity (34) which decreaseg with
increasing, the extraction cvtg’) faces rapidly increasing difficulties. In this case we
use the variational approach of equation (38) or (40), wietey, R), b3(ro, R) have to
be transformed by’ (ro, R), b3 (ro, R) according to (45). Reciprocally, the concavity
increases for decreasing and for valugs> —3 close to—1, the coefficientby’ tends to
M?/2. Then equation (31) is satisfied, ahﬁ) always exists for close enough to—%.

(51)

3. Checking the bounds on some common potentials

In order to see if the bounds we are advocating are of practical interest, numerical tests
have been performed for a set of common, relevant potentials. Unless specified, we
consider the s-wave. The bounds are compared with the exact value¥he results

are displayed in table 1, where the quoted quantities/are A, M1/(2¢ + 1), i = 2-4 and

Yo = AcM1/(2¢ +1).

Table 1. Second- to fourth-order approximations of the critical valye The symboly refers
to the relevant variable M1/(2¢ + 1) (see text). Lower and upper bounds are denoted-Hy (
and (), respectively.

Potentials e wnE o wnEH

Square well 1.26795 1.23229 1.2337472/8~1.23370
Gaussian 145318 1.33615 1.34226 1.3418
Exponential 2 1.42999 1.44678 (rf/4)a ~ 1.44580
Hulthén — 1.57967 1.65238 72/6~ 1.64493
Yukawa — 1.60078 1.68985 1.6798

Square welll =1 — 157967 1.65238 72/6~ 1.64493

2 r1 denotes the first zero of the derivative of the zeroth order Bessel function.
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Because of the scaling property, which does not affect the valug M, all the
length constants appearing in the potentials have been set to unity. The variakieus
dimensionless.

For the shell-delta potential/ " (r) = §(r — 1), the series reduces to-1AM;. Then
AMi1 = 1. This means that the bound gives the exact value in this case.

For the square welly *(r) = 0(1 — r), the series equation (11) reads

0 =3 Sl o
, n=0 (2}’1)'
=)
[O,0=)" @D =1

n=0
As can be seen from table ¥, constitutes a very good approximation to the exact value
for ¢ = 0. The casd¢ = 1 is typical in thaty, does not exist. On the other hand, the fourth
ordery, is very close toy..

For the exponentialy " (r) = e, (11) becomes
(,0) = f )5 (52)
folx. 0) = “nln!

This case is situated at the lintibM, = 2. The second-order bound is quite large and the
results are sensibly improved at the fourth order.
For the Hultten potential,V*(r) = (€' — 1)1, we have the expansion

=) "
f(r,0 = ;mn% . (53)

Up to thex?" factor, this is the same as for the square well Witk 1. Thus, renormalizing
by the volume integral leads to identical results.

For the following potentials).. cannot be extracted analytically.

For the Gaussian potentidl,* (r) = e’ (11) is approximated up to the fourth order

by

1 1 1 = 3arctaiv2) 7
2O =1— A+ —A-m)A>— |- = _ 23
fo3. 0 PRRIET A (8 327" 82 8f2)
1 3arctanv2) P T 72\ ., .
ezt - - + A+ 00d). 54
(16 16/2 162 32/3 1536 (7) (54)

The second-order approximatign, approaches the exact value within 10%. The fourth
order, evaluated using the propeaty= M3/6—b,M1+2b3 (b3 is introduced in appendix B)
and by integratingis by parts, gives almost the exact value.

For the Yukawa potentigV *(r) = €' /r,

foh, 0) =1— 1+ (1—10g(2)2* — (1+log(2) — 310g(3))1>

+(1—4log(2) + 210g(3) — Lin(—1/2) + Liz(—1)

+Lip(—2) — Liz(—3)x* + O(1°) (55)
where Li,(x) is the function [7]

Lir(x) = _/Jf |Og(1y—y) dy.
0
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Figure 1. Full curve: variation of the critical parametggs = AcM1/(2¢ + 1) as a function of
R for the Woods—Saxon potential, equation (56). Broken cu®Realependence of the second-
order approximation ta., equation (19), renormalized by1/(2¢ + 1). Note thaty, would be
indistinguishable from the curve (see text).

The boundy, cannot be calculated wheregsg is quite satisfactory. We notice that the
Yukawa potential has @ very close to that of the Hulfn potential. Both potentials
behave in a similar way at the origin and infinity, suggesting that the behaviours at both
extremes are of key importance for the valuergf

The Woods—Saxon potential is

1
14+ exp((r — R)/0.5)°

The curveR — AcM; is drawn in figure 1. ForR infinite the Woods—Saxon potential
resembles a square well potential and we found a valigmilar to that of the square well.
The upper bound, (broken curve) is a good approximation, better accuracy than 10% at
low R; it gradually improves a® increases up to the square well resultRas> +oco0. We
have verified thal, approximates/ to better accuracy than 0.1%.

For the whole set of potentials considered, we display in table 1 the value of the lower
bound y3. It proves to be rather efficient. In the worst case, among quoted values, it
approaches, within 5% for the Yukawa potential.

We complete this practical study of bounds by checkifig(38) andyP" (40) against
Yer Wherey PP = AFPhAL /(2¢ + 1), Although these bounds are essentially designed to
overcome the problem encountered whendoes not exist, it is instructive to verify their
performance in cases wheype can also be calculated.

The results are displayed in table 2. They are also compared with the lower bound of
Glaseret al [4] and the upper bound of Calogero [3]. In all cases, the variational method
provides a good estimate @f. Except for the casé = 10 (for the square well potential
¢ = 10 we have calculated the upper bound by truncating the potential in the vicinity of zero
as explained above);F is systematically better than the Calogero’s bound. A substantial

Vi) = (56)
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Table 2. A comparison of different approaches of the critical valye The lower bound was
derived by Glaseet al [4] (for the Hulthén potential, (2) is used fqr = %), the upper bound was
derived by Calogero [3], and the two semi-phenomenological bounds which we prop@sed:
(an upper bound), (38) aryfh, (40). The symbo} refers to the relevant variable\1/(2¢ + 1)
(see text). Lower and upper bounds are denoted-fyafd (), respectively.

Potentials y* (=) [4] y B A A Ye
Square well 1.179 1.333 1.268  1.243 1.234
Gaussian 1.330 1.519 1413  1.363 1.342
Exponential 1.438 1.692 1567  1.489 1.446
Hulthen (p=3)1.616 2.000 1.875  1.733 1.645
Yukawa 1.664 2.067 1932  1.777 1.680
Square welle =1 1.520 1.969 1.861  1.726 1.645
Square welle =10 2.908 6.914 6.933 5840 4.611

improvement is obtained withP", nevertheless less satisfactory than

Finally, we remark that for the lower boundg; yields a result closer tg. than the
value of Glaseret al [4] when y, exists. The opposite is true otherwise, even for the
exponential. It suggests that in this latter casevould bring a sizeable improvement over

V3.

4. Conclusions

In the present work, we have established simple bounds,téhe ‘critical’ value of the
coupling constant ensuring the existence of at least one bound statexfar. in the case

of finite range or similar potentials [5]. The method is based on a formal resolution of the
Schibdinger equation for the zero energy state, which allows us to deterrgine

For this particular case of zero energy states, a change of variable reduaestthe
equation into a form similar to the s-wave equation. It allows us to easily calculate bounds
to A¢ for ¢ # 0, except that, aé increases, the condition to obtain low-order bounds, linked
to the concavity condition (34), is satisfied with increasing difficulty.

We distinguish among two kinds of bounds. The first kind are derived from a systematic
expansion of the Schdinger equation solution. In principle, it yields to any desired
accuracy. In practice however, only equations involving the lowest-order contributions are
retained. The calculations are already quite involved at the fourth order, higher orders
becoming tedious.

The second set is obtained in a semi-phenomenological way, introducing comparison
functions 0K U(r) < VT (r) or Fo(r) < F(r), so that the bounds result from the solution
of a quadratic equation, together with a minimization procedure. Although it contains some
arbitrariness, the prescription is found to be efficient, and yields results which compare well
with the exact values.

Finally, by comparing our results with the bounds proposed by Gleseat [4] and
Calogero [3], the present method is found to be quite satisfactory.
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Appendix A

Let us expand the functionpy(1, r) as

Jfo(r,r) = f(—)”an(r)?»” (A1)
where, settingo = r, )

an(r) = / - H(r, — 100 — i) V() dri ap = 1. (A2)

Introducing the explicit expression for the last two terms, we getnfor 2:
n—2

a,(r) = f H(r, —ric)0(r —ri) V() dry
R+)n -2

+00 “+0o0
X / (rn—l - r11—2)V+(rn—1) drn—l/ (rn - rn—l)V+(rn)drn (A3)

Tn—2 Tn—1

with the convennorﬂl _, = 1forn =2. Here,r, —r,_1 is dominated by, —r,_», since
r.—2 < r,—1, and we get, becausé™ is positive

a,(r) < / 1'[<r, — 1 )0 —rio) V() dr
R+)n— i

+00 2
X ( / (rnfl - anz)VJr(rnfl) drnl) (A4)

since the function(r, — r,_2)(r—1 — ra—2) VT (r,) VT (r,_1) is symmetrical in the variables
ra.—1, Ip. Moreover, taking into account that

+00 2
(/ (rnfl - rn72)V+(rnfl) drnl)

is dominated by

+00 +00
/ (r/ - r)V+(r/) dr// (rnfl - rn72)V+(rnfl) drnfl

T'n—2

sincer,_» > ro = r, we obtain:

+00 n—1
a,(r) < f (' =)V d / ) [T = ric06G: — i) V* o) o, (A5)
r Rtyn-1

=1
In other words

+00
a,(r) < an_l(r) / ' —rVTeEHdr. (A6)

This inequality holds for every positiveandn > 2 and in particular for = 0 wherea, (r)
is equal toa,.
The senesZ“?,( )'a, A" is alternating and satisfies, < (M1/2)a,_1. Provided that
< 2/M,, the nth-order remainderR,,, is positive or negative according to the parity of
n.Indeed:
400
Rap(h) = 4% (az, — hazii1) (A7)

n=p
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and

+00
Raopra(h) = = Y A% (az11 — Aagay2) (A8)
n=p

all terms involved in (A7) p > 1) and (A8) being positive.
Appendix B

In this appendix, we defink; and give its connection tas.
We recall the definition ofis:

+o0 +00 +00
as = f rVT(r)dr / =Vt dr’/ " —=rHVTeE"dr”. (B1)
0 , .

Expanding the product(r’ — r)(r" — r’) we get

MS +00 +00 +00
ag = ot = f 2V dr / VEe d / FVEE) A
0 r r

6
+00 +00 +00
— / V() dr f r2vEay dr’ / Vo) dr”
0 ’

+00 ' +00 r+oo
-l—/ V) dr/ rvTe’) dr'/ Ve dr” (B2)
0 r r
where
+00 “+0o0o —+00
Mf/ﬁ:/ rvV*i(r) dr/ r'vie) dr// Ve dr’.
0 r r'

After a modification of the integration order, which is allowed sifi¢g is positive,
adding the second and the third integral leads to

+00 +00 r'
—/ r2v(r) dr/ rVte) dr’/ Ve dr”
0 r r

+00 r +o00o
—/ r2V+(r)dr/ rVTe dr// Ve dr”
0 0 r

which is equivalent to

+00 +00 +o0 +oo
- [ vioa [ rvien dr’( [ vrenar— [ vren dr”)
0 r r r
+00 +00 +00 +o0
[ rview (i [T viener - [T rviene [Tviena).
0 r r r

Consequently the sum of the second and the third integral leabls-toM1b,, Where we
have introduced

+00 400 400
b3 = / 2Vt dr / r'vTQe) dr// Vre"ydr” (B3)
0 P o

and using the definition af,, (28). We find finally

3

M
az = ?1 — boM1 + 2bs. (B4)
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