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A sufficient condition for the existence of bound states for
scalar spherically symmetric potentials
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Abstract. We consider the class of three-dimensional attractive finite range or similar potentials
λW(r), depending on a strength constantλ. Beyond a ‘critical’ value,λc, the potentialλW(r)
has at least one bound state. For the s-wave, we propose simple bounds forλc obtained by
formally solving the Schr̈odinger equation for the zero energy bound state. The various bounds
are compared with the exact valueλc for a set of usual potentials. They are also compared with
bounds derived in earlier works by Glaseret al and by Calogero. We show that the` 6= 0 case
is solved by equations very similar tò= 0 ones.

1. Introduction

The number of bound states produced by a given potential is a standard question of quantum
mechanics, which is discussed in many textbooks (see, for instance [1, 2]). Perhaps the most
familiar relationship is the Bargmann inequality,

n` 6
1

2`+ 1

∫ +∞
0

r|V (r)| dr (1)

it proves very useful when deciding whether the spectrum ofV (r) is finite. However,
because it is an inequality, and moreover an upper bound on the number of bound states, it
cannot ensure the occurrence of at least one bound state. Sufficient conditions exist, which
answer this question [1]. One of them was proposed years ago by Calogero [3]. On the
other hand, optimal conditions have been obtained by Glaseret al [4] for the absence of
bound states by using variational techniques, which reads

(p − 1)p−10(2p)

pp02(p)(2`+ 1)2p−1

∫ +∞
0
|r2V (r)|p dr

r
< 1 16 p 6 3

2. (2)

The purpose of the present work is to provide a simple and efficient criterion for the
existence of a single bound state. It is derived for spherically symmetric potentialsλW(r)

depending on a strength constantλ. The method is based on results reported in a previous
work [5], devoted to the behaviour of the eigenvalue at the transition between zero and
one bound state. This transition occurs at a ‘critical’ value of the strength constantλc,
corresponding to a bound state at zero energy. We show that an estimate can provide an
upper bound ofλc for a large class of potentials.

Let us mention a recent paper by Chadanet al [6] that deals with a generalization
of the Calogero–Cohn bound. Their method is quite different from ours and provides
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an upper bound to the number of bound states. The efficiency of the bound, provided by
equation (2), as well as Calogero’s sufficiency condition, will be compared with the criterion
we are advocating in the present work.

The paper is organized as follows. In section 2 an upper bound forλc is proposed for
the s-wave and extended to higher waves. In section 3 our proposal of an upper bound
for λc is tested against the exact value for some potentials. Conclusions are presented in
section 4.

2. Existence of an upper bound onλc

We consider spherically symmetric scalar potentials,λW(r), having at most a finite number
of bound states for a finite value of the strength constantλ. This class comprises
potentials not too singular at the origin and decreasing fast enough at infinity, i.e. such
that

∫ +∞
0 r|W(r)| dr and

∫ +∞
b
|W(r)| dr, b > 0 are finite.

The Schr̈odinger equation reads :(
− h̄

2

2m
4+ λW(r)

)
ψ(r) = Eψ(r). (3)

Here,m is the mass of the single particle experiencing the potentialW(r), andψ(r) is the
single particle wavefunction.

The usual decomposition on the spherical harmonics

ψ(r) =
∑
`,m

fl(r)

r
Ym` (�) (4)

removes the angular variables. We are left with radial second-order differential equations
depending on the value of the angular momentum`:

f ′′` (λ, E, r) =
(

2m

h̄2 (E + λW(r))+
`(`+ 1)

r2

)
f`(λ,E, r) (5)

where a prime denotes a derivative with respect to the variabler.
In this section we study the transition from zero to one bound state, which corresponds

to the ‘critical’ valueλ = λc [5]. Actually, since|W(r)| is assumed to decrease faster than
1/r2 at infinity the Bargmann inequality [2] applies:

n` 6 − 1

2`+ 1

2m

h̄2 λ

∫ +∞
0

rWa(r) dr (6)

wheren` is the number of bound states of the potential, involving only the attractive part,
Wa, of the potentialW . In the case of interest here,n` = 1, it gives

−2m

h̄2 λ

∫ +∞
0

rWa(r) dr > 2`+ 1. (7)

For the existence of one bound state, this condition is necessary but not sufficient. It is
saturated for shell-delta potential. An upper bound forλc would be very helpful, since for
everyλ > λc the potential has at least one bound state. Note that the Calogero sufficiency
condition [3] yields also an upper bound, but in a quite different way.

As shown in [5], the ‘critical’ value,λc, corresponds to a bound state of zero energy.
For simplicity, we assume the potentialW(r) to be purely attractive and put

V +(r) = −2m

h̄2 W(r) (8)

the functionV + being positive definite.
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2.1. ` = 0

We start with thè = 0 case. Looking forλc, we search for the value ofλ, such that

f ′′0 (λ, r)+ λV +(r)f0(λ, r) = 0 (9)

with the following constraints:f0(λ, r) vanishes atr = 0, is constant asymptotically, and
has no node (f0(λ, r) > 0).

For every positive value ofλ, asymptotically, equation (9) admits two solutions: 1 and
r. Using Lagrange’s method of ‘variation of constants’, the Schrödinger equation with the
boundary condition limr→∞ f0(λ, r) = 1 induces the Volterra integral equation:

f0(λ, r) = 1− λ
∫ +∞
r

(r ′ − r)V +(r ′)f0(λ, r
′) dr ′. (10)

Writing f0(λ, r) as a series expansion

f0(λ, r) =
+∞∑
n=0

f n0 (λ, r) (11)

allows us to solve (10) by iteration:

f 0
0 (λ, r) = 1

f n0 (λ, r) = −λ
∫ +∞
r

(r ′ − r)V +(r ′)f n−1
0 (λ, r ′) dr ′.

(12)

Since

|f n0 (λ, r)| 6 λn
(∫ +∞

0
r ′V +(r ′) dr ′

)n/
n!

the series expansion (11) is normally convergent with respect tor.
By construction, the functionf0(λ, r) corresponds at infinity to an s-wave bound state

wavefunction at zero energy. The second condition is its vanishing atr = 0. For this
purpose, we write

f0(λ, 0) =
+∞∑
n=0

(−)nanλn (13)

where

a0 = 1

a1 =
∫ +∞

0
r1V

+(r1) dr1

a2 =
∫ +∞

0
r1V

+(r1) dr1

∫ +∞
r1

(r2− r1)V +(r2) dr2
. . .

etc, and in general

an =
∫ +∞

0
r1V

+(r1) dr1

∫ +∞
r1

(r2− r1)V +(r2) dr2 . . .

. . .

∫ +∞
rn−2

(rn−1− rn−2)V
+(rn−1) drn−1

∫ +∞
rn−1

(rn − rn−1)V
+(rn) drn. (14)
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For attractive potentialsW(r), thean’s are positive and therefore the series equation (13)
is alternating. Furthermore, in appendix A, we show that

an 6
an−1

2

∫ +∞
0

rV +(r) dr (15)

for n > 2. This inequality ensures that for everyλ 6 2/M1, where we have put
M1 =

∫ +∞
0 rV +(r) dr, we know the sign of thenth-order remainderRn for n > 1, namely

(∀p > 1) R2p(λ) =
+∞∑
n=2p

(−)nanλn > 0 (16)

(∀p) R2p+1(λ) =
+∞∑

n=2p+1

(−)nanλn 6 0. (17)

For everyλ < 1/M1, f0(λ, 0) is positive. Indeed, taking the first two terms of (13),
a0− a1λ = 1− λM1 > 0, we are left withR2 > 0.

At the next order, we look for the solutions of the equation

1−M1λ+ a2λ
2 = 0. (18)

The lowest root reads

λ2 =
M1−

√
M2

1 − 4a2

2a2
(a2 > 0).

It leads to

λ2 = 2

M1+
√
M2

1 − 4a2

6 2

M1
(19)

for a2 > 0, provided thatM2
1 − 4a2 is positive, which is assumed. The boundλ2 is

dominated by 2/M1. The remainderR3 is negative or zero. Consequently,f0(λ2, 0) 6 0
and the ‘critical’ value is situated in the interval

1

M1
6 λc 6 λ2 (20)

or equivalently

16 λcM1 6
2

1+
√

1− 4a2/M
2
1

6 2. (21)

If the discriminantM2
1 − 4a2 is negative, we look for the lowest solution,λ4, of

1−M1λ+ a2λ
2− a3λ

3+ a4λ
4 = 0. (22)

Again, if λ4 exists and satisfiesλ4 6 2/M1, the remainderR5 is negative or zero and
thereforef0(λ4, 0) is negative. We then have

16 λcM1 6 λ4M1 6 2. (23)

Note that since the remainders satisfy inequalities (16), (17), we have

(∀p > 1)
2p−1∑
n=0

anλ
n 6 f0(λ, 0) 6

2p∑
n=0

anλ
n (24)

for λ < 2/M1. On the other hand the term

1−M1λ+ λ2a2− a3λ
3+ a4λ

4
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is positive forλ 6 1/M1 and negative forλ = λ2 (if λ2 exists) thereforeλ4 6 λ2. Moreover,
if λ3 is the lowest solution of the equation

1−M1λ+ a2λ
2− a3λ

3 = 0 (25)

for everyλ 6 λ3, f0(λ, 0) is positive provided thatλ3 6 2/M1. In this case,λc > λ3 and
since the polynomial is positive forλ 6 1/M1, we have

1

M1
6 λ3 6 λc 6 λ4 6 λ2. (26)

It follows from this relationship and the above discussion that an upper bound toλc

can be obtained, provided thatλcM1 < 2. The first-order estimate,λ2, is rather easy to
calculate. It can be systematically improved by considering higher-order approximations.

It would be interesting to determine the class of potentials such thatM2
1 − 4a2 > 0

ensuring the existence ofλ2, which is always bounded by 2/M1 (see (19)). Unfortunately,
we have not found a simple criterion. A necessary condition, however, can be expressed
as an inequality, which we now consider.

By definition,a2 is given by

a2 =
∫ +∞

0
r1V

+(r1) dr1

∫ +∞
r1

(r2− r1)V +(r2) dr2 = M2
1

2
− b2 (27)

where

b2 =
∫ +∞

0
r2

1V
+(r1) dr1

∫ +∞
r1

V +(r2) dr2. (28)

With this new notationλ2 reads

λ2 = 2

M1+
√

4b2−M2
1

. (29)

The condition for a positive discriminant becomes

b2 >
M2

1

4
(30)

or equivalently∫ +∞
0

r2V +(r) dr
∫ +∞
r

V +(r ′) dr ′ > M2
1

4
. (31)

An equivalent expression can be found by defining

F(r) =
∫ +∞
r

V +(r ′) dr ′. (32)

Inequality (31) is obtained when the function logF is concave, and limr→+∞ rF (r) = 0.
This can be shown by integrating with respect tor andr ′ on both sides of the equation

(∀r > 0) (∀r ′ > 0) F 2

(
r + r ′

2

)
> F(r)F (r ′) (33)

derived for the concavity condition of logF . It is equivalent to

d2

dr2
logF(r) = FF ′′ − (F ′)2

F 2
6 0 (34)

which meansFF ′′ − (F ′)2 = −F(V +)′ − (V +)2 6 0. Therefore condition (31) enters the
category of convexity inequalities. It is satisfied by the Woods–Saxon, the Gaussian and



2472 M Lassaut and R J Lombard

the exponential potentials. Note that the latter is a limiting case where d2/dr2 logF(r) is
zero corresponding toλ2 = 2/M1.

It is simple enough to evaluate the boundλ2, so that for potentials not satisfying 4b2 >
M2

1, it is very tempting to circumvent this difficulty by calculatingλ2(U) for an attractive
comparison potential,U , satisfying (31), chosen in such a way thatλc(U) > λc(W). The
intuitively simplest possibility is to consider

U(r) = W(r)θ(r − r0)θ(R − r)
whereθ is the Heaviside function. In this case,

λcM1 6 inf
(r0,R)∈D1

2M1

M1(r0, R)+
√

4b2(r0, R)−M2
1(r0, R)

(35)

whereD1 is the set of values(r0, R) such thatr0 < R and 4b2(r0, R) −M2
1(r0, R) > 0.

However, this bound is not satisfactory numerically.
We found a better approximation by acting on the functionF(r). Consider two attractive

potentials,W1 andW2, satisfying the usual integrability conditions. By definingV +1 and
V +2 as before (see equation (8)), let us first show thatFV +1 6 FV +2 impliesλc(W2) 6 λc(W1).

The Schr̈odinger equations at the ‘critical’ values read

f ′′W1
(r)− 2m

h̄2 λc(W1)W1fW1(r) = 0

f ′′W2
(r)− 2m

h̄2 λc(W2)W2fW2(r) = 0.

fW1 andfW2 having the characteristic behaviour of 1s-state wavefunctions (no nodes).
SinceFV +i (r) =

∫ +∞
r

V +i (r
′) dr ′, i = 1, 2, the WronskianW[fW1, fW2]Rr0, r0 < R is equal

to

W[fW1, fW2]Rr0 = [fW1(r)fW2(r)(λc(W2)FV +2 (r)− λc(W1)FV +1 (r))]
R
r0

−λc(W2)

∫ R

r0

(fW2fW1)
′(r)[FV +2 (r)− FV +1 (r)] dr

+[λc(W1)− λc(W2)]
∫ R

r0

(fW2fW1)
′(r)FV +1 (r) dr. (36)

If FV +1 and FV +2 are such that limr→0 rFV +i (r) = 0, for i = 1, 2, the term in square
brackets in (36) vanishes whenr0→ 0 andR→ +∞. Since the Wronskian tends to zero
when r0 → 0 andR → +∞, the sum of the two last terms on the r.h.s. tends to zero.
AssumeFV +1 6 FV +2 . As W1 andW2 are attractive the derivativesf ′Wi

, i = 1, 2 decrease
and since they are zero at infinity both are positive. Therefore(fW1fW2)

′ is positive, and
consequentlyλc(W2) 6 λc(W1).

According to this, we have introduced a comparison functionFC(r), under the following
constraints: r 7→ FC(r) decreases (the corresponding potential must be attractive) and
(∀r)Fc(r) 6 F(r). This can proceed in various ways. The following prescription, although
not unique, has been found useful:

FC(r) = F(r0) r 6 r0
FC(r) = F(r) r0 6 r 6 R

FC(r) = F(R)
(

1− r − R
ε

)
R 6 r 6 R + ε

FC(r) = 0 r > R + ε.

(37)
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It is easy to verify thatFC(r) satisfies the stated conditions for sufficiently smallε and
we obtain, in the limitε → 0,

λcM1 6 inf
(r0,R)∈D2

2M1

M̃1(r0, R)+
√

4b̃2(r0, R)− M̃2
1(r0, R)

= λF2M1 (38)

where

M̃1(r0, R) = RF(R)+
∫ R

r0

rV +(r) dr

b̃2(r0, R) = R2F(R)2

2
+
∫ R

r0

r2V +(r) dr
∫ +∞
r

V +(r ′) dr ′.
(39)

The domainD2 is the set of values(r0, R), r0 < R such that the discriminant exists.
Among other possibilities which we have investigated numerically, the best

phenomenological bound we have found consists in calculatingM1 and b2 on a finite
interval [r0, R], while keeping F(r) at its original value, remembering thatb2 =∫ +∞

0 r2V +(r)F (r) dr. In this case, we are left with

λcM1 6 inf
(r0,R)∈D3

2M1

M1(r0, R)+
√

4b∗2(r0, R)−M2
1(r0, R)

= λphM1 (40)

whereD3 is the set(r0, R), r0 < R which satisfies 4b∗2(r0, R)−M2
1(r0, R) > 0 and

M1(r0, R) =
∫ R

r0

rV +(r) dr

b∗2(r0, R) =
∫ R

r0

r2V +(r)F (r) dr.

(41)

This prescription has no further justification.
We shall end this section with two remarks. The above bounds,λb, requireλbM1 6 2.

For cases such thatλcM1 > 2, there is no other solution to finding a positive functionU
such that(∀r)U(r) 6 V +(r) and satisfyingλb(U)M1(U) 6 2. It leads to

λcM1 6 λb(U)M1.

Secondly, for potentials having a repulsive partr 6 a, the upper bounds are obtained
by solving the equation forf0(λ, a) = 0. This is more or less obvious since for a repulsive
hard core, the conditionf0(λ, 0) = 0 is equivalent tof0(λ, a) = 0. This is nothing but
solving the Schr̈odinger equation for the translated potential(∀r) Wa(r) = W(r + a).

Indeed, if we putf a0 (λ, r) = f0(λ, a + r) equation (10) reads

f a0 (λ, r) = 1− λ
∫ +∞
r+a

(r ′ − r − a)V +(r ′)f a0 (λ, r ′ − a) dr ′

≡ 1− λ
∫ +∞
r

(r ′ − r)V +(r ′ + a)f a0 (λ, r ′) dr ′.

2.2. ` 6= 0

As far as the critical zero energy bound state is concerned, the Schrödinger equation for
waves of angular momentum̀6= 0 reduces to an s-wave problem. In order to show it, we
start from the radial wave equation

d2

dr2
f`(λ, r)+

(
λV +(r)− `(`+ 1)

r2

)
f`(λ, r) = 0. (42)
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The transformation

r = x1/(2`+1)

f`(r) = r−`φ`(x)
(43)

yields

d2

dx2
φ`(λ, x)+ λ

(2`+ 1)2
V +(x1/(2`+1))x−4`/(2`+1)φ`(λ, x) = 0 (44)

which is equivalent to an s-wave equation. Consequently the results of the preceding section
can be applied toφ`(λ, x). For instance, by using transformation (43), searching forλc for
the Gaussian potential at` = 1

2, is equivalent to searching for the critical value in the` = 0
Yukawa case.

Note that for regular potentials, this transformation introduces a singularity at the origin
which never exceeds 1/x2. In the case of singular potentials behaving liker−α, α < 2
at the origin, the transformed potential is still singular at the origin, where it behaves like
x−(α+4`)/(2`+1). Thus, its singularity is strictly less thanx−2. At x →+∞ the transformed
potential decreases asx−(α+4`)/(2`+1), when limr→+∞ rαV +(r) = 0, (α > 2). Thus it
decreases faster thanx−2.

Note also that the concavity of the transformedV +, according to (32) and (34), is
decreasing with increasing angular momentum`. Thus, it becomes more and more difficult
to get any boundλ(`)2 when the angular momentum increases.

The coefficientsM1 andb2, introduced for̀ = 0, depend oǹ according to

M1 7→ (2`+ 1)
∫ +∞

0
rV +(r) dr = (2`+ 1)M1

b2 7→ (2`+ 1)2
∫ +∞

0
r2`+2V +(r) dr

∫ +∞
r

r ′−2`V +(r ′) dr ′ = (2`+ 1)2b(`)2 .

(45)

In r-space, the expansion of the radial wavefunction becomes

ϕ`(λ, r) =
+∞∑
n=0

ϕ
(n)
` (λ, r) (46)

whereϕ`(λ, r) = r`f`(λ, r). The values ofϕ(n)` are given by

ϕ
(0)
` (λ, r) = 1

ϕ
(n)
` (λ, r) = − λ

2`+ 1

∫ +∞
r

(
r ′ −

( r
r ′
)2`
r

)
ϕ
(n−1)
` (λ, r ′)V +(r ′) dr ′.

(47)

Note that (46) and (47) can be extracted from the Volterra integral equation
obtained from the two solutionsr`+1 and r−`, combined with the asymptotic condition
limr→+∞ r`f`(λ, r) = 1.

At the origin

lim
r→0+

ϕ`(λ, r) =
+∞∑
n=0

(−)na(`)n
(

λ

2`+ 1

)n
(48)

wherea(`)0 = 1, a(`)1 = M1, a(`)2 = M2
1/2− b(`)2 and

a`n =
∫ +∞

0
r1V

+(r1) dr1

∫ +∞
r1

(
r2− r1

(
r1

r2

)2`
)
V +(r2) dr2 . . .
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. . .

∫ +∞
rn−2

(
rn−1− rn−2

(
rn−2

rn−1

)2`
)
V +(rn−1) drn−1

×
∫ +∞
rn−1

(
rn − rn−1

(
rn−1

rn

)2`
)
V +(rn) drn. (49)

Therefore the new series becomes an expansion of the variableλ/(2` + 1). Applying the
previous results we find that whenλ/(2`+ 1) < 1/M1 no bound state exists, in agreement
with the Bargmann inequality.

The boundλ2 becomes

λ
(`)

2

2`+ 1
M1 = 2

1+
√

4b(`)2 /M
2
1 − 1

(50)

and exists whenb(`)2 > M2
1/4. This convexity inequality is satisfied when the second

derivative of log(
∫ +∞
r1/(2`+1) V

+(r ′)r ′−2` dr ′) is negative or zero. It should be noted that the

boundλ(`)2 is dominated by 2(2`+ 1)/M1 and we have

16 λ(`)c M1

2`+ 1
6 λ

(`)

2 M1

2`+ 1
6 2. (51)

Due to reasons stated above, concerning the concavity (34) which decreases with`

increasing, the extraction ofλ(`)2 faces rapidly increasing difficulties. In this case we
use the variational approach of equation (38) or (40), whereb̃2(r0, R), b

∗
2(r0, R) have to

be transformed iñb(`)2 (r0, R), b
∗(`)
2 (r0, R) according to (45). Reciprocally, the concavity

increases for̀ decreasing and for values̀> − 1
2 close to− 1

2, the coefficientb(`)2 tends to

M2
1/2. Then equation (31) is satisfied, andλ(`)2 always exists for̀ close enough to− 1

2.

3. Checking the bounds on some common potentials

In order to see if the bounds we are advocating are of practical interest, numerical tests
have been performed for a set of common, relevant potentials. Unless specified, we
consider the s-wave. The bounds are compared with the exact valuesλc. The results
are displayed in table 1, where the quoted quantities areγi = λiM1/(2`+ 1), i = 2–4 and
γc = λcM1/(2`+ 1).

Table 1. Second- to fourth-order approximations of the critical valueλc. The symbolγ refers
to the relevant variableλM1/(2`+ 1) (see text). Lower and upper bounds are denoted by (−)
and (+), respectively.

Potentials γ2 (+) γ3 (−) γ4 (+) γc

Square well 1.267 95 1.232 29 1.233 74π2/8' 1.233 70
Gaussian 1.453 18 1.336 15 1.342 26 1.3418
Exponential 2 1.429 99 1.446 78 (r2

1/4)
a ' 1.445 80

Hulthén — 1.579 67 1.652 38 π2/6' 1.644 93
Yukawa — 1.600 78 1.689 85 1.6798

Square well̀ = 1 — 1.579 67 1.652 38 π2/6' 1.644 93

a r1 denotes the first zero of the derivative of the zeroth order Bessel function.
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Because of the scaling property, which does not affect the value ofλcM1, all the
length constants appearing in the potentials have been set to unity. The variabler is thus
dimensionless.

For the shell-delta potential,V +(r) = δ(r − 1), the series reduces to 1− λM1. Then
λM1 ≡ 1. This means that the boundλ2 gives the exact value in this case.

For the square well,V +(r) = θ(1− r), the series equation (11) reads

f0(λ, 0) =
+∞∑
n=0

(−)n
(2n)!

λn ` = 0

f1(λ, 0) =
+∞∑
n=0

(−)n
(2n+ 1)!

λn ` = 1.

As can be seen from table 1,γ2 constitutes a very good approximation to the exact value
for ` = 0. The casè = 1 is typical in thatγ2 does not exist. On the other hand, the fourth
orderγ4 is very close toγc.

For the exponential,V +(r) = e−r , (11) becomes

f0(λ, 0) =
+∞∑
n=0

(−)n
n!n!

λn. (52)

This case is situated at the limitλ2M1 = 2. The second-order bound is quite large and the
results are sensibly improved at the fourth order.

For the Hulth́en potential,V +(r) = (er − 1)−1, we have the expansion

f (λ, 0) =
+∞∑
n=0

(−)n
(2n+ 1)!

π2nλn. (53)

Up to theπ2n factor, this is the same as for the square well with` = 1. Thus, renormalizing
by the volume integral leads to identical results.

For the following potentials,λc cannot be extracted analytically.
For the Gaussian potential,V +(r) = e−r

2
, (11) is approximated up to the fourth order

by

f0(λ, 0) = 1− 1

2
λ+ 1

16
(4− π)λ2−

(
1

8
− π

32
+ 3 arctan(

√
2)

8
√

2
− π

8
√

2

)
λ3

+
(

1

16
+ 3 arctan(

√
2)

16
√

2
− π

16
√

2
− π

32
√

3
+ π2

1536

)
λ4+O(λ5). (54)

The second-order approximation,γ2, approaches the exact value within 10%. The fourth
order, evaluated using the propertya3 = M3

1/6−b2M1+2b3 (b3 is introduced in appendix B)
and by integratinga4 by parts, gives almost the exact value.

For the Yukawa potentialV +(r) = e−r/r,

f0(λ, 0) = 1− λ+ (1− log(2))λ2− (1+ log(2)− 3
2 log(3))λ3

+(1− 4 log(2)+ 3
2 log(3)− Li2(−1/2)+ Li2(−1)

+Li2(−2)− Li2(−3))λ4+O(λ5) (55)

whereLi2(x) is the function [7]

Li2(x) = −
∫ x

0

log(1− y)
y

dy.
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Figure 1. Full curve: variation of the critical parameterγc = λcM1/(2` + 1) as a function of
R for the Woods–Saxon potential, equation (56). Broken curve:R-dependence of the second-
order approximation toλc, equation (19), renormalized byM1/(2`+ 1). Note thatγ4 would be
indistinguishable from theγc curve (see text).

The boundγ2 cannot be calculated whereasγ4 is quite satisfactory. We notice that the
Yukawa potential has aγc very close to that of the Hulth́en potential. Both potentials
behave in a similar way at the origin and infinity, suggesting that the behaviours at both
extremes are of key importance for the value ofλc.

The Woods–Saxon potential is

V +(r) = 1

1+ exp((r − R)/0.5) . (56)

The curveR 7→ λcM1 is drawn in figure 1. ForR infinite the Woods–Saxon potential
resembles a square well potential and we found a valueγc similar to that of the square well.
The upper boundγ2 (broken curve) is a good approximation, better accuracy than 10% at
low R; it gradually improves asR increases up to the square well results asR→+∞. We
have verified thatγ4 approximatesγc to better accuracy than 0.1%.

For the whole set of potentials considered, we display in table 1 the value of the lower
bound γ3. It proves to be rather efficient. In the worst case, among quoted values, it
approachesγc within 5% for the Yukawa potential.

We complete this practical study of bounds by checkingγ F (38) andγ ph (40) against
γc, whereγ F,ph = λF,phM1/(2` + 1). Although these bounds are essentially designed to
overcome the problem encountered whenγ2 does not exist, it is instructive to verify their
performance in cases whereγ2 can also be calculated.

The results are displayed in table 2. They are also compared with the lower bound of
Glaseret al [4] and the upper bound of Calogero [3]. In all cases, the variational method
provides a good estimate ofγc. Except for the casè = 10 (for the square well potential
` = 10 we have calculated the upper bound by truncating the potential in the vicinity of zero
as explained above),γ F is systematically better than the Calogero’s bound. A substantial
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Table 2. A comparison of different approaches of the critical valueλc. The lower bound was
derived by Glaseret al [4] (for the Hulth́en potential, (2) is used forp = 3

2), the upper bound was
derived by Calogero [3], and the two semi-phenomenological bounds which we proposed:γ F

2

(an upper bound), (38) andγ ph
2 , (40). The symbolγ refers to the relevant variableλM1/(2`+1)

(see text). Lower and upper bounds are denoted by (−) and (+), respectively.

Potentials γ ∗ (−) [4] γ ∗∗ (+) [3] γ F
2 (+) γ

ph
2 γc

Square well 1.179 1.333 1.268 1.243 1.234
Gaussian 1.330 1.519 1.413 1.363 1.342
Exponential 1.438 1.692 1.567 1.489 1.446
Hulthén (p = 3

2) 1.616 2.000 1.875 1.733 1.645
Yukawa 1.664 2.067 1.932 1.777 1.680

Square well̀ = 1 1.520 1.969 1.861 1.726 1.645
Square well̀ = 10 2.908 6.914 6.933 5.840 4.611

improvement is obtained withγ ph, nevertheless less satisfactory thanγ4.
Finally, we remark that for the lower bounds,γ3 yields a result closer toγc than the

value of Glaseret al [4] when γ2 exists. The opposite is true otherwise, even for the
exponential. It suggests that in this latter caseγ5 would bring a sizeable improvement over
γ3.

4. Conclusions

In the present work, we have established simple bounds toλc, the ‘critical’ value of the
coupling constant ensuring the existence of at least one bound state forλ > λc in the case
of finite range or similar potentials [5]. The method is based on a formal resolution of the
Schr̈odinger equation for the zero energy state, which allows us to determineλc.

For this particular case of zero energy states, a change of variable reduces the` 6= 0
equation into a form similar to the s-wave equation. It allows us to easily calculate bounds
to λc for ` 6= 0, except that, as̀ increases, the condition to obtain low-order bounds, linked
to the concavity condition (34), is satisfied with increasing difficulty.

We distinguish among two kinds of bounds. The first kind are derived from a systematic
expansion of the Schrödinger equation solution. In principle, it yieldsλc to any desired
accuracy. In practice however, only equations involving the lowest-order contributions are
retained. The calculations are already quite involved at the fourth order, higher orders
becoming tedious.

The second set is obtained in a semi-phenomenological way, introducing comparison
functions 06 U(r) 6 V +(r) or FC(r) 6 F(r), so that the bounds result from the solution
of a quadratic equation, together with a minimization procedure. Although it contains some
arbitrariness, the prescription is found to be efficient, and yields results which compare well
with the exact values.

Finally, by comparing our results with the bounds proposed by Glaseret al [4] and
Calogero [3], the present method is found to be quite satisfactory.
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Appendix A

Let us expand the functionf0(λ, r) as

f0(λ, r) =
+∞∑
n=0

(−)nan(r)λn (A1)

where, settingr0 = r,

an(r) =
∫
(R+)n

n∏
i=1

(ri − ri−1)θ(ri − ri−1)V
+(ri) dri a0 = 1. (A2)

Introducing the explicit expression for the last two terms, we get, forn > 2:

an(r) =
∫
(R+)n−2

n−2∏
i=1

(ri − ri−1)θ(ri − ri−1)V
+(ri) dri

×
∫ +∞
rn−2

(rn−1− rn−2)V
+(rn−1) drn−1

∫ +∞
rn−1

(rn − rn−1)V
+(rn) drn (A3)

with the convention
∏n−2
i=1 ≡ 1 for n = 2. Here,rn − rn−1 is dominated byrn − rn−2, since

rn−2 6 rn−1, and we get, becauseV + is positive

an(r) 6 1
2

∫
(R+)n−2

n−2∏
i=1

(ri − ri−1)θ(ri − ri−1)V
+(ri) dri

×
(∫ +∞

rn−2

(rn−1− rn−2)V
+(rn−1) drn−1

)2

(A4)

since the function(rn − rn−2)(rn−1− rn−2)V
+(rn)V +(rn−1) is symmetrical in the variables

rn−1, rn. Moreover, taking into account that(∫ +∞
rn−2

(rn−1− rn−2)V
+(rn−1) drn−1

)2

is dominated by∫ +∞
r

(r ′ − r)V +(r ′) dr ′
∫ +∞
rn−2

(rn−1− rn−2)V
+(rn−1) drn−1

sincern−2 > r0 ≡ r, we obtain:

an(r) 6 1
2

∫ +∞
r

(r ′ − r)V +(r ′) dr ′
∫
(R+)n−1

n−1∏
i=1

(ri − ri−1)θ(ri − ri−1)V
+(ri) dri . (A5)

In other words

an(r) 6
an−1(r)

2

∫ +∞
r

(r ′ − r)V +(r ′) dr ′. (A6)

This inequality holds for every positiver andn > 2 and in particular forr = 0 wherean(r)
is equal toan.

The series
∑+∞

n=0(−)nanλn is alternating and satisfiesan 6 (M1/2)an−1. Provided that
λ 6 2/M1, the nth-order remainder,Rn, is positive or negative according to the parity of
n. Indeed:

R2p(λ) =
+∞∑
n=p

λ2n(a2n − λa2n+1) (A7)
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and

R2p+1(λ) = −
+∞∑
n=p

λ2n+1(a2n+1− λa2n+2) (A8)

all terms involved in (A7) (p > 1) and (A8) being positive.

Appendix B

In this appendix, we defineb3 and give its connection toa3.
We recall the definition ofa3:

a3 =
∫ +∞

0
rV +(r) dr

∫ +∞
r

(r ′ − r)V +(r ′) dr ′
∫ +∞
r ′

(r ′′ − r ′)V +(r ′′) dr ′′. (B1)

Expanding the productr(r ′ − r)(r ′′ − r ′) we get

a3 = M3
1

6
−
∫ +∞

0
r2V +(r) dr

∫ +∞
r

V +(r ′) dr ′
∫ +∞
r ′

r ′′V +(r ′′) dr ′′

−
∫ +∞

0
rV +(r) dr

∫ +∞
r

r ′2V +(r ′) dr ′
∫ +∞
r ′

V +(r ′′) dr ′′

+
∫ +∞

0
r2V +(r) dr

∫ +∞
r

r ′V +(r ′) dr ′
∫ +∞
r ′

V +(r ′′) dr ′′ (B2)

where

M3
1/6=

∫ +∞
0

rV +(r) dr
∫ +∞
r

r ′V +(r ′) dr ′
∫ +∞
r ′

r ′′V +(r ′′) dr ′′.

After a modification of the integration order, which is allowed sinceV + is positive,
adding the second and the third integral leads to

−
∫ +∞

0
r2V +(r) dr

∫ +∞
r

r ′V +(r ′) dr ′
∫ r ′

r

V +(r ′′) dr ′′

−
∫ +∞

0
r2V +(r) dr

∫ r

0
r ′V +(r ′) dr ′

∫ +∞
r

V +(r ′′) dr ′′

which is equivalent to

−
∫ +∞

0
r2V +(r) dr

∫ +∞
r

r ′V +(r ′) dr ′
(∫ +∞

r

V +(r ′′) dr ′′ −
∫ +∞
r ′

V +(r ′′) dr ′′
)

−
∫ +∞

0
r2V +(r) dr

(
M1

∫ +∞
r

V +(r ′′) dr ′′ −
∫ +∞
r

r ′V +(r ′) dr ′
∫ +∞
r

V +(r ′′) dr ′′
)
.

Consequently the sum of the second and the third integral leads tob3 −M1b2, where we
have introduced

b3 =
∫ +∞

0
r2V +(r) dr

∫ +∞
r

r ′V +(r ′) dr ′
∫ +∞
r ′

V +(r ′′) dr ′′ (B3)

and using the definition ofb2, (28). We find finally

a3 = M3
1

6
− b2M1+ 2b3. (B4)
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